Search results for "Ribosome assembly"

showing 2 items of 2 documents

The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation

2017

Ribosome assembly requires the concerted expression of hundreds of genes, which are transcribed by all three nuclear RNA polymerases. Transcription elongation involves dynamic interactions between RNA polymerases and chromatin. We performed a synthetic lethal screening in Saccharomyces cerevisiae with a conditional allele of SPT6, which encodes one of the factors that facilitates this process. Some of these synthetic mutants corresponded to factors that facilitate pre-rRNA processing and ribosome biogenesis. We found that the in vivo depletion of one of these factors, Arb1, activated transcription elongation in the set of genes involved directly in ribosome assembly. Under these depletion c…

0301 basic medicineRibosomal ProteinsSaccharomyces cerevisiae ProteinsTranscription Elongation GeneticCèl·lulesÀcids nucleicsGene regulatory networkRibosome biogenesisSaccharomyces cerevisiaeBiologyRibosome assembly03 medical and health sciencesRegulació genèticaGeneticsGene Regulatory NetworksHistone ChaperonesRNA Processing Post-TranscriptionalGeneAdenosine TriphosphatasesFeedback PhysiologicalMessenger RNAOrganelle BiogenesisGene regulation Chromatin and EpigeneticsRNAChromatinCell biology030104 developmental biologyRNA RibosomalMutationATP-Binding Cassette TransportersOrganelle biogenesisTranscriptional Elongation FactorsSynthetic Lethal MutationsTranscriptomeRibosomes
researchProduct

2017

Reconstructing the transition from a single compartment bacterium to a highly compartmentalized eukaryotic cell is one of the most studied problems of evolutionary cell biology. However, timing and details of the establishment of compartmentalization are unclear and difficult to assess. Here, we propose the use of molecular markers specific to cellular compartments to set up a framework to advance the understanding of this complex intracellular process. Specifically, we use a protein family related to ribosome biogenesis, YRG (YlqF related GTPases), whose evolution is linked to the establishment of cellular compartments, leveraging the current genomic data. We analyzed orthologous proteins …

0301 basic medicineFungal proteinMultidisciplinaryProtein familyRibosome biogenesisCompartmentalization (psychology)BiologyCell biologyRibosome assembly03 medical and health sciences030104 developmental biologyMolecular evolutionProteomeCellular compartmentPLOS ONE
researchProduct